If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+9n+1=0
a = 8; b = 9; c = +1;
Δ = b2-4ac
Δ = 92-4·8·1
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-7}{2*8}=\frac{-16}{16} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+7}{2*8}=\frac{-2}{16} =-1/8 $
| 8(x-2)-1=5x+3(-4+x) | | 6x-10+6x-2=132 | | 116+2y=180 | | 0.67=3n-n | | 14x+5=103 | | 3x+10=-6x+55 | | 1-4x=4x+81 | | 11-4x=-17 | | 21=2/3v | | -6=-4+k/3=k=-6 | | .75w=27 | | 8.4o-6.8=+14.2+6.3o | | 8(p-3)=4p;6 | | 18x+5+25=24x | | 7f-23=180 | | 4(5x7)=20x-28 | | -7+5x+39=4+9x | | 4x-11=-83 | | 8.4o-6.8=+4.2+6.3o | | 9-3x=19-x | | 2x-5x-7=-3x+6-7 | | 12x+1+20x=65 | | (22-x)=(3x-22) | | 0.003(9-k)+0.05(k-3)=1 | | 10x-2+3x=128 | | 12x+2+71=23x+7 | | -2x+8=-12+3x | | 12=-2.8+x | | 20x-2x^2=-22 | | 13x+1+40=19x-1 | | 70+(x+63)+(x+63)=180 | | (x+7)/3=-6 |